

Estimating Mutual Information by Bayesian Binning

Dominik Endres
University of St. Andrews, UK

The problem

- (Discrete) random variables: X, Y
- $x \in \{1; ...; K\}, y \in \{1; ...; C\}$
- In Neurophysiology:
 - Y: stimulus label
 - X: evoked response
- We would like to estimate the mutual information
 - I(X;Y) = H(X) + H(Y) H(X,Y)
- from a sample of pairs $(x,y)_n$ of length N

The problem

Where (Shannon 1948)

$$H(X) = -\sum_{k=1}^{K} P_k \ln(P_k)$$
 $H(Y) = -\sum_{c=1}^{C} P_c \ln(P_c)$

$$H(X,Y) = -\sum_{k=1}^{K} \sum_{c=1}^{C} P_{kc} \ln(P_{kc})$$

$$P_{k} = \sum_{c=1}^{C} P_{kc}$$
 $P_{c} = \sum_{k=1}^{K} P_{kc}$

When is this difficult/easy?

- Easy:
 - If N >> CK, i.e. the joint distribution of X and Y is well sampled
 - Use maximum-likelihood estimate for P_{kc} , i.e.

$$\hat{P}_{kc} = \frac{n_{kc}}{N}, \quad \hat{H}(X, Y) = -\sum_{k=1}^{k} \sum_{c=1}^{C} \hat{P}_{kc} \ln(\hat{P}_{kc})$$

- Similar result available for the variance of H (Paninski, 2003).

When is this difficult/easy?

- Difficult:
 - N<CK
 - Uniformly consistent estimator for H exists, if N/(CK) is small, but N has to be large (Paninski, 2004).
 - For large CK, and small N/(CK), Bayesian estimators of H can be heavily biased (Nemenman et al., 2003)

What is the interesting range?

- In neurophysiological experiments, usually
 - N << CK
 - N small
- Our approach: describe the P_k by a small number of bins.

The model

- For simplicity, assume C=1. Extension to C>1 later.
- Assume that instances of X can be totally ordered, and their similarity can be measured by x_i - x_i .

Scale of X: ordered metric or interval.

The model

- If neighbouring P_k are 'similar enough', then they can be modeled by a **single** probability P_m , i.e. those P_k can be **binned** together.
- Here: only M=3 instead of K=10 probabilities need to be estimated. M: number of bins.

What is 'similar enough'?

- Evaluate the posterior probabilities of all possible binnings given an i.i.d. sample of length N via
 Bayesian inference.
- Either pick the model with the highest posterior probability, or integrate out all unwanted parameters to get expectations.

Model parameters

- M: number of bins, K: number of support points of p_k .
- k_m : upper bound (inclusive) of bin m.
- P_m : probability in bin m.

$$\forall k_{m-1} < k \le k_m : \tilde{P}_k = \frac{P_m}{\Delta_m}$$

$$\Delta_m = k_m - k_{m-1}$$

Likelihood of a sample, length N

- D: the sample.
- n_m : number of sample points in bin m.

$$P(D|M,\{(k_m,P_m)\}) = \prod_{m=1}^{M} \left(\frac{P_m}{\Delta_m}\right)^{n_m}$$

Prior assumptions

- All M equally likely, given M≤K.
- All k_m equally likely, given that the bins are contiguous and do not overlap.
- P_m constant (e.g. equi-probable binning) or Dirichletprior over $\{P_m\}$.
- P_m and k_m independent *a priori*, and independent of M (except for their number).

Marginal expectations

 Posterior probability of M (e.g. for selecting the best M):

$$P(M|D) = \frac{P(D|M)P(M)}{P(D)}$$

$$P(D|M) \propto \sum_{k_1} \sum_{k_2} ... \sum_{k_{M-1}} P(D|M, \{(k_m, P_m)\})$$

Problem: this takes O(K^M) operations !!

But there is hope...

- The likelihood factorizes into contributions for different bins.
- The k_m are ordered.

$$m{P}(m{D}|m{M}) \propto \sum_{k_1} \left(rac{m{P}_1}{m{\Delta}_1}
ight)^{n_1} \sum_{k_2} \left(rac{m{P}_2}{m{\Delta}_2}
ight)^{n_2} ... \sum_{k_{M-1}} \left(rac{m{P}_{M-1}}{m{\Delta}_{M-1}}
ight)^{n_{M-1}} \left(rac{m{P}_M}{m{\Delta}_M}
ight)^{n_M}$$

• Similar to sum-product algorithm (Kschischang et al., 2001), dynamic programming (Bellman, 1953).

1. For every fixed k_2 , compute all contributions from bins 3 and 4, add and store the results: $O(K^2)$ operations, O(K) memory.

The core iteration 2

2. Release k_2 , and repeat the procedure for every fixed k_1 : $O(K^2)$ operations. Reuse memory for new sub-results.

The algorithm

- Total computational cost: O(MK²) instead of the naïve O(K^M).
- Instead of fixed $\{P_m\}$, a Dirichlet prior over $\{P_m\}$ can also be used:

$$p(\lbrace P_m\rbrace | M) \propto \prod_{m=1}^{M} P_m^{\theta-1} \delta \left(\sum_{m=1}^{M} P_m - 1 \right)$$

• Advantage: P_m can be distributed freely across the bins.

The algorithm

With a Dirichlet prior, we find

$$P(D|M,\{k_m\}) \propto \frac{\Gamma(M\theta)}{\Gamma(N+M\theta)} \prod_{m=1}^{M} \frac{\Gamma(n_m+\theta)}{\Delta_m^{n_m} \Gamma(\theta)}$$

- One factor per bin which depends only on the parameters of that bin.
- Thus, the same sum-product decomposition as before can be applied.

Computable expectations

- Instead of the marginal likelihood P(D|M), we can also compute
 - The expectation of any function of X.
 - The expectations of various functions of the probabilities in the bins and the bin boundaries, such as
 - the predictive distribution and its variance,
 - the expected bin boundaries,
 - the entropy of X and its variance.

Predictive distribution

Posterior of the number of bins M

Predictive distribution

Posterior of the number of bins M

JS-distance between predictive and generating distributions – 6 bin distribution

JS-distance between predictive and generating distributions – 2 MOG

Extension to C>1

• The extension to C>1 is straightforward, given that the bin boundaries are the same for each y

Computable expectations

- Joint entropy H(X,Y) and variance.
- Marginal entropies H(X), H(Y) and variances.
- Mutual information I(X;Y)=H(X)+H(Y)-H(X,Y).

Comparison of I(X;Y) estimates to NSB and Panzeri-Treves

RSVP results

RSVP results

Upper bound on the variance of I(X;Y)

- Computing the variance of I(X;Y) is difficult.
- Simulations suggest:

 $Var(I(X;Y)) \le Var(H(X,Y))$ for Dirichlet p(oste)riors

Bayesian Bin Distribution Inference

- Runtime O(K²) instead of O(K^M) for *exact* Bayesian inference, if instances of X are totally ordered.
- Computable expectations: predictive distribution and variance, entropies and variances, expectation of mutual information.
- Available at:
 - D. Endres and P. Földiák, "Bayesian Bin Distribution Inference and Mutual Information", *IEEE Trans. Inf. Theo.*, 51(11), pp. 3766-3779, 2005.
 - http://www.st-andrews.ac.uk/~dme2